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ABSTRACT 

Generalized Space Time Autoregressive (GSTAR) is one of space-time models that 

frequently used for forecasting spatio-temporal data. Up to now, the researches about 

GSTAR only focused on stationary non-seasonal spatio-temporal data. Ordinary 

Least Squares (OLS) is a method that usually applied to estimate the parameters of 

GSTAR model. Parameter estimation by using OLS for GSTAR model with 

correlated residuals between equations will produce inefficient estimators. The 

method that appropriate to estimate the parameter model with correlated residuals 

between equations is Generalized Least Square (GLS), which is usually used in 

Seemingly Unrelated Regression (SUR) model. The purpose of this research is to 

propose GLS method for estimating parameters in seasonal GSTAR models, known 

as S-GSTAR-SUR. Moreover, this research also proposes a spatial weight based on 

the normalization of partial cross-correlation inference. Simulation study is done for 

evaluating the efficiency of GLS estimators. Then, the number of tourist arrivals at 

four tourism locations in Indonesia (i.e. Jakarta, Bali, Surabaya, and Surakarta) is 

used as a case study. The results of simulation study show that S-GSTAR-SUR 

yields more efficient estimators than S-GSTAR-OLS when the residuals between 

equations are correlated. It is showed by the smaller standard error of S-GSTAR-

SUR estimators. Additionally, the comparison of forecast accuracy between Vector 

Autoregressive Integrated Moving Average (VARIMA), S-GSTAR-OLS and S-

GSTAR-SUR shows that S-GSTAR-SUR model with spatial weight based on 

normalization of partial cross-correlation inference yields the smallest RMSE for 

forecasting the number of tourist arrivals at four tourism locations in Indonesia. 
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1. Introduction 

In daily life, we often find data that not only have correlation with the 

events at the previous times, but also correlate to location or another space 

that is usually referred to as spatial data. Space-time model is a model that 

combines of time and location dependencies in a multivariate time series 

data. 

 

One of the space-time models that frequently used is the Generalized 

Space-Time Autoregressive or GSTAR which is introduced by Borovkova 

et al. (2002). There are several studies that have been conducted relating to 

the application of GSTAR, such as Ruchjana (2002) who have applied 

GSTAR for petroleum production modeling. Deng and Athanasopoulos 

(2011) used Space-Time Autoregressive Integrated Moving Average 

(STARIMA) for prediction of domestic tourists in Australia, and Wutsqa 

and Suhartono (2010) also applied VAR-GSTAR model for forecasting the 

number of tourist arrivals. Moreover, Nurhayati et al. (2012) applied 

GSTAR for forecasting GDP in Western European countries. 

 

Until now, most researches that related to GSTAR only focused on 

stationary and non-seasonally spatio-temporal data. In addition, Ordinary 

Least Squares (OLS) is a method that usually used to estimate the 

parameters in the GSTAR model (Borovkova et al. (2008)). OLS estimation 

in the multivariate models, including GSTAR, with correlated residuals 

would yield inefficient estimators. One of the appropriate estimation 

methods in the case of correlated residuals is Generalized Least Square 

(GLS), which is commonly used in the Seemingly Unrelated Regression 

(SUR) model (Zellner (1962); Henningsen and Hamann (2007)). 

 

The purpose of this research is to study theoretically about the GLS 

method for estimating the parameters of GSTAR model, and then referred 

to as GSTAR-SUR. Furthermore, the results of the theoretical study will be 

validated on a simulation study, i.e. through the estimator comparison of 

GSTAR-SUR and GSTAR-OLS which is applied to seasonal data and the 

combination of seasonal and non-seasonal data using spatial weight based 

on normalization of partial cross-correlation inference. As a case study, the 

results of theoretical and simulation study was then applied to forecasting 

the number of tourist arrivals in four main gates in Indonesia, namely 

Jakarta, Bali, Surabaya and Surakarta. The results are compared to the 

forecast of VARIMA model by using RMSE criteria.  

 

 



S-GSTAR-SUR Model for Seasonal Spatio Temporal Data Forecasting 

 Malaysian Journal of Mathematical Sciences 55 

 

2. Methods 

In this section, the statistical methods that are used for statistical 

estimations are presented. 

 

2.1  VARIMA (Vector Autoregressive Integrated Moving Average) 

Model 

 

Let Zi(t) with , t = {1, 2,…,T) and i = {1,2,…,N} are index of time and 

variables, then the VARIMA model can be expressed as follows 

(Wei(2006)):  

       p qB t B tΦ Z Θ e . (1) 

VARIMA model building is done through the steps of identification, 

parameter estimation, diagnostic checks, and forecasting such as the Box-

Jenkins procedure (Suhartono and Atok (2005)). Identification step is done 

for determining order of the model by using a time series plot, MCCF 

(Matrix Cross Correlation Function), MPCCF (Matrix Partial Cross 

Correlation Function), and the AIC (Akaike's Information Criterion). 

Parameter estimation step is done using the method of Least Square or 

Maximum Likelihood. Then, diagnostic checks is performed to evaluate 

whether the residuals of the model has been satisfied white noise condition. 

Finally, the best model is used to calculate the final prediction, both point 

and interval prediction.   

 

2.2 GSTAR Model 

GSTAR is a generalization of the STAR models. Let {Z(t) : t=0,±1,±2,...} is 

a multivariate time series of N locations, then GSTAR with time order p and 

spatial order 1 2, ,..., p   , i.e. GSTAR  1 2; , ,..., pp    , in matrix notation can 

be written as follows (Borovkova et al. (2008)): 

( )
0

1 1

( )  ( ) ( )
sp

k
s sk

s k

t t s t


 

 
     

 
Z Φ Φ W Z e  (2) 

where 0 10 0diag( , , ),s s
s N Φ 1diag( , , )s s

sk k Nk Φ , ( )te  is residual model that 

satisfies identically, independent, distributed with mean 0 and covariance Σ .  

For instance, GSTAR model with time and spatial order one for three 

locations is as follows: 

)()1()1()( 1110 tttt eZWΦZΦZ
(1)   (3) 

Tt
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and in matrix form, equation (3) can be written as follows:  
 

1 10 1 11 12 13 1 1

2 20 2 21 21 23 2 2

3 30 3 31 31 32 3 3

( ) 0 0 ( 1) 0 0 0 ( 1) ( )

( ) 0 0 ( 1) 0 0 0 ( 1) ( ) .

( ) 0 0 ( 1) 0 0 0 ( 1) ( )

Z t Z t w w Z t e t

Z t Z t w w Z t e t

Z t Z t w w Z t e t

 

 

 

           
          

              
                     

 
(4) 

   

There are several matrices of spatial weights or W that usually used in 

GSTAR model, i.e. uniform weight, weight based on inverse of distance 

between locations, weight based on normalization of cross correlation 

inference, and weight based on normalization of partial cross correlation 

inference (Borovkovaet al. (2008)).  
 

2.3 SUR (Seemingly Unrelated Regression) 

SUR is a system of equations consisting of multiple regression equations 

where the residual is not correlated between observations in a single 

equation, but has correlation between the residual equations. Information 

about the presence of correlation between residual equations can be used by 

Generalized Least Square (GLS) method to improve the model estimators. 

GLS is an estimation method of regression parameter that consider the 

correlation of the residuals between equations, where the residual estimates 

obtained from Ordinary Least Square (OLS) will be used in the estimation 

of regression coefficients in the equation SUR system. In general, SUR 

models for N equations where each equation consists of K predictors can be 

written as follows: 
 

1 10 11 11 12 1 2 1 1 1

2 20 21 2 1 22 2 2 2 2 2

0 1 1 2 2

, , K ,K

, , K ,K

N N N N , N N , NK N ,K N

Y X X X e

Y X X X e

Y X X X e

   

   

   

     

     

     

 
(5) 

where i = 1, 2,…,N. 
 

 

The assumptions that must be fulfilled at the SUR model are ( )= ,E ε 0
 
and 

( )= ,ij TE εε σ I
 
where i, j = 1, 2,…,N. 

 

2.4 Criteria for Selection the Best Model  

The best model is selected based on the prediction accuracy of the out 

sample data. The criteria are out sample RMSE, which means that the best 

model is the model that has the smallest RMSE. The formula to calculate 

RMSE at out sample data is as follows: 
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  
2

1

1 M

T l T
l

ˆRMSE Z Z l
M




  . (6) 

 

3. Results 

In this section, we firstly present the theoretical results, then the 

results of simulation study, and finally the results of empirical study.  

 

3.1 Estimator β̂  of Seasonal GSTAR-SUR Model  

Let {Z(t): t = 0,±1,±2,} is a multivariate time series of N locations, then 

the GSTAR([12]1) model can be written as 

       12 12
0 1 12t t t   Z Φ Φ W Z e  (7) 

where time parameter 12
0Φ  and spatial parameter 12

1Φ  and spatial weight W 

as follows: 

12
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12
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,
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 
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 
 
 

Φ
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2112

1
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1

0 0
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





 
 
 
 
 
 

Φ
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21 2

1 2

0

0

0

N

N

N N

w w

w w
.

w w

 
 
 
 
 
 

W

 

 

Then, model in Eq. (7) could be written in matrix form as follows: 

 
 
 

 

   

   

 
 
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1 1 1 110
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2 211
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      
       
      
      
              

Z Z V 0 0 e

Z 0 0 0 0 e

Z 0 0 0 0 e

Z 0 0 Z V e

 

(8) 

where  

 

 
 

 

1

2

i

i

i

i

z

z
t ,

z T

 
 
 
 
 
  

Z  

 
 

 

11

10
12

12

i

i

i

i

z

z
t ,

z T

 
 

  
 
 

  

Z  

 
 

 

1

2

i

i

i

i

e

e
t ,

e T

 
 
 
 
 
  

e  

 
 

 

11

10
12

12

j i ij j
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V
 

and i= 1, 2,…, N. Thus, for each i, we have equation   
 

       12 12
0 112 12i i i i i it t t t     Z Z V e . (9) 
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The equation of GSTAR-SUR model could be written as follows: 

i , t i ,t i i , t Y X β ε  (10) 

where : 

  i , t i tY Z ,      12 12i , t i it t    X Z V ,   i , t i tε e ,  
12
0

12
1

i

i

i





 
  
 

β . 

Thus, the equation of GSTAR-SUR model in matrix representation could be 

written as follows:  

1 1 11

2 2 22

,t ,t , t

,t ,t , t

N ,t N ,t N , tN







      
      
       
      
      
           

 

Y X 0 0 ε

Y 0 X 0 ε

Y 0 0 X ε

Y X β ε

. 
(11) 

The residuals of GSTAR-SUR model are assumed not correlated in each 

location i, i.e.   

 
0

i , t j , s

ij

, t s
E

, t s
 




 



 

where i, j = 1, 2,…, N  and t, s = 1, 2,…, T. But, the residuals of GSTAR-

SUR model are correlated among equations or locations. Hence, variance-

covariance matix of residual is  

( )= ij TE εε σ I  

Since ( )= ij TE εε σ I
 
then 

 

11 12 1

21 22 2

1 2

T T N T

T T N T

N T N T NN T

E

  

  

  

 
 
  
 
 
 

I I I

I I I
εε

I I I

1

1 2

11 12 1N

2 22 2 N

N N NN

σ σ σ

σ σ σ

σ σ σ

 
 
     
 
 
 

T TΙ Σ Ι Ω
 

where Ω is matrix (N×T)×(N×T). 

 

Parameter estimation in GSTAR-SUR model is done by applying 

Generalized Least Square (GLS) method, i.e. by minimizing generalized 

sum of square 1ε Ω ε . The results of GLS estimators of seasonal GSTAR-

SUR model are as follows: 

 
1

1 1ˆ 
  β XΩ X XΩ Y .   
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Since   TΩ Σ I , then β estimator is  

    
1

1 1ˆ


 
   T Tβ X Σ I X X Σ I Y . (12) 

 

The asymptotics properties of GLS estimators are as follows: 

(a) If  ( )E Y Xβ , then β  is unbiased estimator for β , i.e.  

( )ˆE β β  

If cov(𝐘) = 𝛀, then variance-covariance matrix of β  is  

   
1

1Cov ˆ 
β XΩ X  

(b) If ε follow normal distribution with mean 𝟎 and variance 𝛔𝑖𝑗𝐈𝑇 , and 

write in matrix representation as  

 ~ , ij TN 0 σ I  

then estimator β  is asymptotics normal distribution with mean β and 

variance-covariance matrix Cov( )β̂ , so  

  Covˆ ˆ~ N ,β β β  

      where: 

       

12
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12

11
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0

12

1
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







 
 
 
 
 
 
 
 

β  

       
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N N
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, , ,
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ˆ

, , ,

, ,

      

      

      

    

β

   2 12 12

0 1
var

N N

.

, 

 
 
 
 
 
 
 
 
 

  

Hence, each element of β  is normal distribution, i.e.  

    12 12 12
0 0 0~ 0, vari i iN    

    12 12 12
1 1 1~ 0, vari i iN   . 

(13) 

 

3.2  Modeling of Seasonal Simulation Data, and Combination 

Seasonal and Non Seasonal Simulation Data using GSTAR-OLS and 

GSTAR-SUR  

The results of a simulation study using both the seasonal and the 

combination between seasonal and non-seasonal data, show that the optimal 

spatial weight GSTAR is found by normalizing the results of statistical 

inference on the partial cross-correlation between the locations of the 

corresponding time lag.  
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Moreover, the simulation results also show that the estimator of GSTAR-

SUR model is more efficient than GSTAR-OLS models when the residual 

between locations are correlated. It is shown by the smaller standard error 

of GSTAR-SUR estimators.  

 

3.3 Modeling of Tourist Arrivals Data using VARIMA Model 

In this research, the data used as empirical study are secondary data about 

the number of tourist arrivals to Jakarta, Bali, Surabaya and Surakarta, 

which is obtained from the Indonesian Central Bureau of Statistics. The 

data is from January 1996 to December 2013 and divided into in sample 

and out sample data, i.e. data from January 1996 to December of 2011 as in 

sample data, while the out sample data is starting from January 2012 to 

December 2013. 

 

The identification step of VARIMA model shows that data are not stationer 

in mean both at seasonal and non-seasonal pattern. Hence, differencing on 

both non seasonal (d=1) and seasonal (D=1, S=12) order are applied to 

make stationary data. Then, AIC and MPCCF plot are used to identify the 

temporary order of VARIMA model. The MPCCF plot shows that the 

significance lags are at lag 1 and 12, whereas the smallest AIC is at AR(2) 

and MA(0). Thus, the temporary VARIMA model based on both AIC and 

MPCCF plot is VARIMA([1,2,12],1,0)(0,1,0)
12

. The results of parameter 

estimation and diagnostic check show that all parameters are statistically 

significance and residuals model satisfy the white noise condition. Hence, 

VARIMA([1,2,12],1,0)(0,1,0)
12

 is appropriate model for forecasting these 

tourist arrivals data.      

 

3.4 Modeling of Tourist Arrivals Data using GSTAR-OLS Model 

OLS method is used to estimate the parameters of GSTAR-OLS model. 

Three spatial weights are applied for GSTAR modeling, i.e. uniform 

weight, weight based on inverse of distance, and weight based on 

normalization of partial cross correlation inference. The time lag order of 

GSTAR-OLS model is determined based on the order of previous 

VARIMA model, i.e. involve lag 1, 2 and 12. Whereas, the spatial order of 

GSTAR-OLS model is assumed following the 1
st
 spatial order. Hence, the 

GSTAR-OLS model that be used in this analysis is GSTAR([1,2,12]1)-

I(1)(1)
12

. 

 

The results of parameter estimation of GSTAR-OLS model using uniform 

and inverse of distance weight yield 10 statistically significance parameters. 
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Whereas, GSTAR-OLS model with spatial weight based on normalization 

of partial cross correlation inference gives 12 parameters is statistically 

significance. Moreover, the diagnostic check shows that the residuals of 

these GSTAR-OLS models fulfill white noise assumption.  

 

3.5  Modeling of Tourist Arrivals Data using GSTAR-SUR Model 

In this research, the same spatial and time order model is used in VARIMA 

and GSTAR models, both GSTAR-OLS and GSTAR-SUR, i.e. ([1,2,12]1-

I(1)(1)
12

. Furthermore, the spatial weights in both GSTAR-SUR and 

GSTAR-OLS are also similar, namely uniform weight, weight based on 

inverse of distance, and weight based on normalization of partial cross 

correlation inference. The estimation method in GSTAR-SUR model is 

Generalized Least Squares or GLS which is usually used for SUR model.  

 

As in GSTAR-OLS model, the results of parameter estimation of GSTAR-

SUR model using uniform and inverse of distance weight also yield 10 

statistically significance parameters. Moreover, GSTAR-SUR model with 

both spatial weights give the same parameter estimate values. Otherwise, 

the results also show that the standard errors of GSTAR-SUR estimators are 

smaller than GSTAR-OLS estimators. It proves that GSTAR-SUR yield 

more efficient estimator than GSTAR-OLS. The empirical result of this 

comparison is shown at Table 1.  

 
TABLE 1: The comparison between standard error of estimator from GSTAR-OLS and GSTAR-SUR 

model using uniform and inverse of distance weight 

Parameter 

GSTAR-OLS GSTAR-SUR 

Coefficient 

value 

Standard 

Error 

Coefficient 

value 

Standard 

Error 

1
10  -0.374 0.0689 -0.432 0.0646 

12
10  -0.267 0.0723 -0.312 0.0679 

1
20

 
-0.119 0.0667 -0.148 0.0640 

12
10

 
-0.510 0.0685 -0.523 0.0658 

1
30  -0.291 0.0691 -0.276 0.0666 

2
30

 
-0.227 0.0689 -0.187 0.0664 

12
30

 
-0.387 0.0660 -0.403 0.0637 

1
40  -0.255 0.0724 -0.255 0.0718 

2
40

 
-0.294 0.0772 -0.289 0.0765 

12
40

 
-0.306 0.0774 -0.297 0.0766 
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Furthermore, the result of GSTAR-SUR estimator using spatial weight 

based on normalization of partial cross correlation inference also shows that 

12 parameter are statistically significance. As at the previous results, it also 

shows that the standard errors of GSTAR-SUR estimators are smaller than 

GSTAR-OLS estimators. Hence, this empirical result proves consistently 

that GSTAR-SUR model yield more efficient estimator than GSTAR-OLS 

model. 

 

3.6  The Comparison of Forecast Accuracy between VARIMA, 

GSTAR-OLS and GSTAR-SUR for Tourist Arrivals Prediction 

Forecasting of the number of tourist arrivals was done by applying seven 

previous models, i.e. VARIMA, both GSTAR-OLS and GSTAR-SUR with 

three spatial weights (uniform, inverse of distance, and normalization of 

partial cross correlation inference). The RMSE of each model is shown at 

Table 3.  

 
TABLE 3: The results of forecast accuracy comparison between VARIMA, GSTAR-OLS and  

GSTAR-SUR model  

Model 
RMSE at Out-Sample 

RMSE 

Total Jakarta Bali Surabaya Surakarta 

VARIMA 22,201 16,391* 1,359 1,131 13,827 

GSTAR-OLS      

- uniform weight 17,843 20,808 1,198 462* 13,720 

- inverse of distance weight 17,843 20,808 1,198 462* 13,720 

- normalization of PCC  

inference weight 
17,601* 20,808 1,329 462* 13,645 

GSTAR-SUR      

- uniform weight 17,726 20,614 1,193* 463 13,609 

- inverse of distance weight 17,726 20,614 1,193* 463 13,608 

- normalization of PCC  
inference weight 

17,611 20,681 1,325 463 13,600* 

 
In total, it shows that GSTAR-SUR with spatial weight based on 

normalization of partial cross correlation inference yield the smallest 

RMSE, i.e. 13.600, and it also means that this model is the best forecasting 

model for tourist arrivals prediction. Additionally, Figure 1 shows the 

forecasting of the number of tourist arrivals at out sample data by using 

GSTAR-SUR. 
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Figure 1: The comparison between actual and forecast at out sample data using GSTAR-SUR, i.e.   

number of tourist arrivals to Jakarta (a), Bali (b), Surabaya (c), and Surakarta (d)   

 

4. Conclusion 

Based on the results at the previous section, it can be concluded that 

Generalized Least Squares (GLS) method could be straightforwardly 

applied in GSTAR model for estimating the parameters, particularly when 

the residuals between locations are correlated. This research already 

proposed the GSTAR model with GLS estimation, then known as GSTAR-

SUR, and how to construct data structure for calculating the estimators.  

 

Furthermore, the results of simulation study that focused to seasonal 

and combination between seasonal and non-seasonal models showed that 

the determination of spatial weight on GSTAR model could be optimally 

done by applying a normalization of statistical inference on the partial 

cross-correlation between the locations of the corresponding time lag. 

Additionally, the simulation study also proved that GSTAR-SUR yield 

more efficient estimators than GSTAR-OLS when the residuals between 

locations are correlated. It was shown by the smaller standard error of the 

GSTAR-SUR estimators. Moreover, the empirical results showed that 

GSTAR-SUR with spatial weight based on normalization of partial cross-

correlation inference gave more accurate forecast than GSTAR-OLS and 

VARIMA models for tourist arrivals prediction.  

 

In addition, this research is limited to GSTAR model without 

predictor. Hence, further research is needed to develop GSTAR models 
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which contain predictor as in ARIMAX or VARIMAX, both of metric and 

nonmetric predictor. 
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